

Bestandsanalyse

- Zwischenbericht -

Kommunale Wärmeplanung Gemeinde Schwaig b. Nürnberg

Projekt	Kommunale Wärmeplanung Gemeinde Schwaig b. Nürnberg	
Auftraggeber	Stadt Röthenbach a. d. Pegnitz, Gemeinden Rückersdorf, Leinburg, Schwaig b. Nürnberg	
Bearbeiter	Katharina Will, Markus Rößler, zeitgeist engineering gmbh	
Kontakt	katharina.will@ib-zeitgeist.de +49 (0) 911 21707-411	
Datum	04.12.2024	

1. Zusammenfassung

In der Bestandsanalyse im Zuge der kommunalen Wärmeplanung wird die aktuelle Situation in der Wärme- und Stromversorgung aufgezeigt. Dazu wird die Flächennutzung sowie Siedlungsstruktur, die bestehenden Energieversorgungsanlagen und -netze und die Verteilung der Wärmeerzeuger analysiert. Darauf basierend wird eine Energie- und Treibhausgasbilanz erstellt. Das bebaute Gebiet umfasst circa 55,4 % der Gemeindefläche. Der Großteil der Wohnbebauung stammt aus den Jahren von 1919 bis 1948 (Kernorte) und von 1949 bis 1978. Die Stromerzeugung vor Ort erfolgt durch ca. 460 PV-Anlagen (meist kleiner als 30 kWp) mit ca. 4.400 MWh pro Jahr sowie durch mehrere kleine fossile Anlagen, die ca. 1.100 MWh pro Jahr erzeugen. Darüber hinaus existieren keine weiteren Stromerzeugungsanlagen. Im Süden des Gemeindegebiets gibt es ein Umspannwerk. Das Gasnetz erstreckt sich über den gesamten Ort. Im Bereich Wohnen & Kleinverbraucher stammt 88 % der erzeugten Energiemenge für Raumwärme und Warmwasser aus Erdgas oder Heizöl, 9 % aus Biomasse. Bei Industrie & Großgewerbe wird 94 % der Wärme (inklusive Prozesswärme) durch die Verbrennung von Erdgas gewonnen, 5 % stammt aus Heizöl. Raumwärme und Warmwasser zur Versorgung von Öffentlichen Einrichtungen wird zu 78 % aus Erdgas und 22 % aus Biomasse erzeugt. Die Hälfte des Strombezugs aus dem Stromnetz ist auf den Bereich Wohnen & Kleinverbraucher zurückzuführen, 48 % auf Industrie & Großgewerbe und nur 2 % auf die öffentlichen Einrichtungen. Insgesamt summiert sich der thermische Endenergieverbrauch aller Verbrauchergrupim Gemeindegebiet auf circa 111.900 MWh pro Jahr; der Endenergieverbrauch, bezogen aus dem Stromnetz, auf 32.200 MWh pro Jahr. Dies entspricht einem Ausstoß von 26.800 bzw. 12.300 t CO₂-Äquivalenten pro Jahr.

Inhalt

1.	Zusam	menfassung	1
2.	Bestar	ndsanalyse	4
2	.1. D	atengrundlagen und Verbrauchergruppen	4
	2.1.1.	Datengrundlagen	4
	2.1.2.	Verbrauchergruppen	4
2	.2. F	lächennutzung und Siedlungsstruktur	5
	2.2.1.	Flächennutzung	5
	2.2.2.	Siedlungsstruktur	6
2	.3. E	nergieerzeugungsanlagen und Versorgungsnetze	8
	2.3.1.	Energieerzeugungsanlagen	8
	2.3.2.	Versorgungsnetze der Wärmeversorgung	10
	2.3.3.	Stromversorgungsnetze	11
	2.3.4.	Abwasserkanalnetz	11
2	.4. V	Värmeerzeugung: Methodik zur Ermittlung des IST-Zustands	13
2	.5. E	nergiebilanz Wärme	16
	2.5.1.	Wohnen & Kleinverbraucher	16
	2.5.2.	Industrie & Großgewerbe	17
	2.5.3.	Öffentliche Einrichtungen	18
	2.5.4.	Zusammenfassung Energiebilanz Wärme	19
2	.6. R	aumwärme- und Warmwasserbedarf auf Baublockebene	21
	2.6.1.	Absoluter Heizwärme- und Warmwasserbedarf	22
	2.6.2.	Heizwärme- und Warmwasserbedarf pro Baublockfläche	22
	2.6.3.	Wärmeliniendichte	23
2	.7. E	nergiebilanz Strombezug	24
	2.7.1.	Methodik	24
	2.7.2.	Zusammenfassung Energiebilanz Strombezug	25
2	.8. T	reibhausgasbilanz Wärme und Strom	26
3.	Literat	urverzeichnis	29
1	Linuxoi	00	21

Abbildungsverzeichnis

Abbildung 1: Flächennutzung auf dem Gemeindegebiet Schwaig	6
Abbildung 2: Siedlungsentwicklung der Gemeinde Schwaig	7
Abbildung 3: Baublöcke unterschieden nach Nutzungsarten	8
Abbildung 4: Standorte größerer Energieerzeugungsanlagen	9
Abbildung 5: Elektrische Leistungen und Erträge nach Marktstammdatenregister	10
Abbildung 6: Leitungsgebundene Wärmeversorgung in den Baublöcken	11
Abbildung 7: Stromversorgungsnetze auf dem Gemeindegebiet	12
Abbildung 8: Kanalnetz mit Durchmesser größer 800 mm und Sammel-, Rückhalte- und Überlaufbecken	13
Abbildung 9: Verteilung thermischer Endenergieverbrauch Wohnen & Kleinverbraucher	17
Abbildung 10: Verteilung thermischer Endenergieverbrauch Industrie & Großgewerbe	18
Abbildung 11: Verteilung thermischer Endenergieverbrauch der Öffentlichen Einrichtungen	19
Abbildung 12: Prozentualer Energieverbrauch für Heiz- und Prozesswärme aufgeteilt auf Verbrauchergruppen	
Abbildung 13: Energieträgerverteilung für Heiz- und Prozesswärme aller Verbrauchergruppen	20
Abbildung 14: Absoluter jährlicher Heizwärme- und Warmwasserbedarf pro Baublock	22
Abbildung 15: Jährlicher Heizwärme- und Warmwasserbedarf pro Baublockfläche	23
Abbildung 16: Wärmeliniendichten am Beispiel des Ortsteils Schwaig südlich der Bahngleise	24
Abbildung 17: Prozentualer Strombezug aufgeteilt auf die Verbrauchergruppen	25
Abbildung 18: Endenergieverbrauch thermisch und elektrisch	27
Abbildung 19: CO ₂ -Äquivalente resultierend aus dem Endenergieverbrauch. Für das ganze Gemeindegebiet aufgeteilt auf die Verbrauchergruppen	27
Tabellenverzeichnis	
Tabelle 1: Datengrundlagen der Bestandsanalyse	4
Tabelle 2: Flächen nach Nutzungsart auf dem Gemeindegebiet der Gemeinde Schwaig [1]	
Tabelle 3: Therm. und elektr. Leistungen bzw. Energiemengen der Wärmenetze und Stromerzeugungsanlagen nach Marktstammdatenregister	
Tabelle 4: Angenommene Leistung der einzelnen Energieträger	14
Tabelle 5: Thermischer Endenergieverbrauch des Bereichs Wohnen & Kleinverbraucher	17
Tabelle 6: Thermischer Endenergieverbrauch von Industrie & Großgewerbe	17
Tabelle 7: Thermischer Endenergieverbrauch der öffentlichen Einrichtungen. Aufgeteilt auf Energieträger	18
Tabelle 8: Kennwerte der Energiebilanz Wärme	
Tabelle 9: Strombezug aufgeteilt auf Verbrauchergruppen	25
Tabelle 10: Kennwerte der Energiebilanz Strombezug	26
Tabelle 11: CO ₂ -Äquivalente der Energieträger	26
Tabelle 12: Kennwerte der Treibhausgasbilanz	28

2. Bestandsanalyse

In der Bestandsanalyse werden die aktuelle Energieversorgung, die dazugehörende Infrastruktur und die bestehenden Energieerzeugungsanlagen untersucht. Zudem wird eine Treibhausgasbilanz für die Sektoren Wärme und Strom erstellt.

2.1. Datengrundlagen und Verbrauchergruppen

In diesem vorgelagerten Kapitel werden die Datengrundlagen der Bestandsanalyse sowie die Einteilung der Verbrauchergruppen dargestellt und genauer erläutert.

2.1.1. Datengrundlagen

Für die Bestandsanalyse der kommunalen Wärmeplanung sind Daten externer Akteure eine Grundvoraussetzung. In Tabelle 1 sind tabellarisch die Quellen der jeweiligen Daten für die verschiedenen Abschnitte der Bestandsanalyse aufgelistet.

Kapitel	Datengrundlage
Gebäude- und Siedlungsstruktur	ALKIS, Gemeinde Schwaig
Energieerzeugungsanlagen und Versorgungsnetze	Marktstammdatenregister, Energie-Atlas Bayern, N-ERGIE AG, N-ERGIE Netz GmbH, lokale Akteure
Wärmeerzeugung	Kehrbuchdaten Schwaig, N-ERGIE Netz GmbH, Gemeinde Schwaig
Energiebilanz Wärme	Energie-Atlas Bayern, Kehrbuchdaten Gemeinde Schwaig, Fragebogen Industrie & Großgewerbe, Ge- meinde Schwaig, N-ERGIE Netz GmbH
Energiebilanz Strombezug	N-ERGIE Netz GmbH, Gemeinde Schwaig
Treibhausgasbilanz Wärme und Strom	Klimaschutz- und Energieagentur Baden-Württemberg GmbH u.a.
Raumwärme- und Warmwasser- bedarf auf Baublockebene	Wärmekataster des digitalen Energienutzungsplans des Landkreises Nürnberger Land, Fragebogen In- dustrie & Großgewerbe, Fragebogen an die Bürgerin- nen und Bürger

Tabelle 1: Datengrundlagen der Bestandsanalyse

2.1.2. Verbrauchergruppen

Die Verbraucher auf dem Gemeindegebiet Schwaig werden im Zuge der Bestandsanalyse in drei Verbrauchergruppen eingeteilt:

- Wohnen & Kleinverbraucher
- Industrie & Großgewerbe
- Öffentliche Einrichtungen

Diese Unterteilung geht auf die von den Energieversorgungsunternehmen zur Verfügung gestellten Daten zurück. Die tatsächlichen Verbrauchswerte für Strom und Gas werden in Großkunden und Jahreskunden aufgeteilt. Somit sind Industrie & Großgewerbe separat aufgelistet und lassen sich von privaten Haushalten und kleineren Gewerbebetrieben unterscheiden. Die möglichen Maßnahmen zur Dekarbonisierung des Wärmesektors sind bei Kleingewerbe und

privaten Haushalten miteinander vergleichbar, da hier die Wärmeverbräuche in einer ähnlichen Größenordnung liegen. Die Daten der Verbrauchergruppe Öffentliche Einrichtungen basieren auf tatsächlichen Verbräuchen und lassen sich somit von den anderen beiden Verbrauchergruppen differenzieren. Die Abgrenzung dieser Verbrauchergruppe ist außerdem sinnvoll, da der Kommune bei eigenen Gebäuden und öffentlichen Verbrauchern andere Handlungsmöglichkeiten als den privaten Verbrauchern zur Verfügung stehen.

Unter Öffentlichen Einrichtungen werden grundsätzlich alle Gebäude und Infrastruktur zusammengefasst, die sich im Eigentum der Kommune, des Landes oder des Bundes befinden. In Schwaig werden nur kommunale Liegenschaften untersucht. Dazu gehören auch im Eigentum der Gemeinde befindliche Wohnhäuser, Ampelanlagen und Abwasser-Infrastruktur.

Die Kategorie Wohnen & Kleinverbraucher umfasst neben privaten Haushalten und Kleingewerbe auch Wohn- und Pflegeheime, private Schulen und kirchliche Einrichtungen.

2.2. Flächennutzung und Siedlungsstruktur

Im Zuge der kommunalen Wärmeplanung wird die Flächennutzung und die Siedlungsstruktur auf dem Gemeindegebiet Schwaig untersucht. Diese Daten sind für die Abschätzung des Wärmebedarfs sowie für die Potenzialanalyse von Bedeutung.

2.2.1. Flächennutzung

Durch Auswertung der von der Kommune zur Verfügung gestellten ALKIS-Daten wird ein Überblick über die Flächennutzung auf dem Gemeindegebiet geschaffen. Abbildung 1 zeigt kartografisch die Flächennutzung im Gemeindegebiet.

Wald und Landwirtschaft nehmen zusammen etwa ein Drittel der Fläche ein. Der Rest der Fläche wird überwiegend für Siedlung und Verkehr genutzt. In Tabelle 2 sind die Flächen nach Nutzungsart in Hektar und prozentual zum gesamten Stadtgebiet aufgelistet.

Tabelle 2: Flächen nach Nutzungsart auf dem Gemeindegebiet der Gemeinde Schwaig [1]

Nutzungsart	Fläche [ha]	Fläche [%]
Wald	100	16,9
Landwirtschaft	109	18,5
Siedlungs- und Verkehrsfläche	327	55,4
Sonstiges Gebiet	54	9,2
Gesamtes Gebiet	590	100

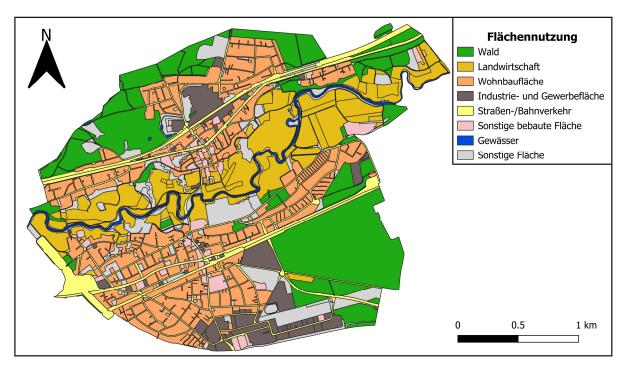


Abbildung 1: Flächennutzung auf dem Gemeindegebiet Schwaig

2.2.2. Siedlungsstruktur

In Abbildung 2 ist die Siedlungsentwicklung der Gemeinde Schwaig aufgezeigt [2]. Die Ortskerne stammen aus der Zeit vor 1948. Darüber hinaus sind große Teile der Wohngebiete im Zeitraum von 1949 bis 1978 entstanden. Weite Teile der Industrie wurden in den 1980er- und 1990er-Jahren gebaut.

Zum Zwecke des Datenschutzes und der besseren Veranschaulichung wird das bebaute Gebiet in kleinere Baublöcke eingeteilt. Die Einteilung verläuft größtenteils entlang von Straßen und Schienen oder natürlichen Grenzen, wie zum Beispiel der Pegnitz. Es wird versucht, möglichst Gebiete mit gleicher Größe zu definieren. Bei Industrie und verwinkelten Bebauungsgebieten kann dies abweichen.

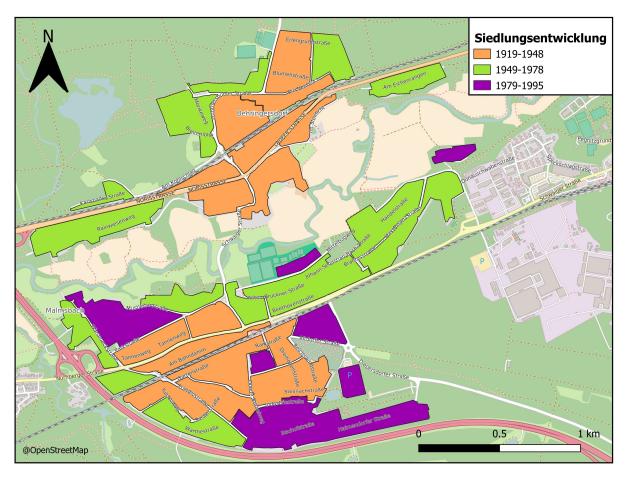


Abbildung 2: Siedlungsentwicklung der Gemeinde Schwaig

In Abbildung 3 sind die Nutzungsarten der Gebäude nach den drei Verbrauchergruppen Wohnen & Kleinverbraucher, Industrie & Großgewerbe sowie Öffentliche Einrichtungen dargestellt. In einigen Gebieten überlagern sich die Nutzergruppen. Die Industrie konzentriert sich vor allem auf drei Gebiete, zwei im Ortsteil Schwaig und eines im Ortsteil Behringersdorf. An der Diepersdorfer Straße befindet sich darüber hinaus ein Gewerbegebiet mit mehreren großen Supermärkten und Geschäften. Ansonsten besteht die Gemeinde vor allem aus Wohngebieten durchzogen von Gewerbe und öffentlichen Einrichtungen.

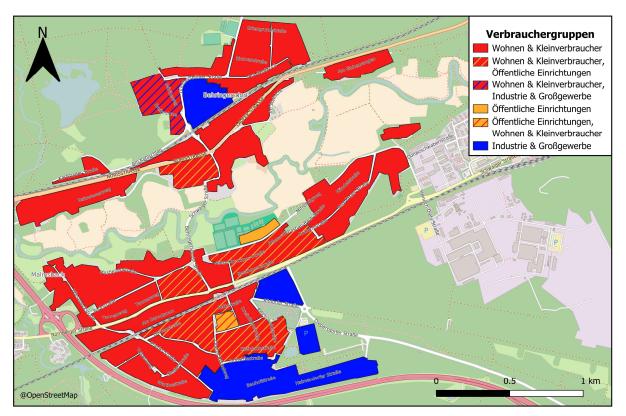


Abbildung 3: Baublöcke unterschieden nach Nutzungsarten

2.3. Energieerzeugungsanlagen und Versorgungsnetze

Für die Potenzialanalyse sowie die Planung der zukünftigen Energieversorgung ist die Beschreibung der Ist-Situation der erste Schritt. Daher werden im folgenden Kapitel die auf dem Gemeindegebiet bestehenden Energieerzeugungsanlagen sowie die Energieinfrastruktur untersucht.

2.3.1. Energieerzeugungsanlagen

Die Bestandsanalyse zu Energieerzeugungsanlagen basiert auf den Daten des Marktstammdatenregisters [3] für den Sektor Strom sowie des Energie-Atlas Bayern [4]. Zentrale Wärmeerzeugungsanlagen, welche in ein Wärmenetz einspeisen, gibt es in Schwaig nicht. Die größten Stromerzeugungsanlagen mit einer Leistung von größer als 30 kW sind in Abbildung 4 eingezeichnet.

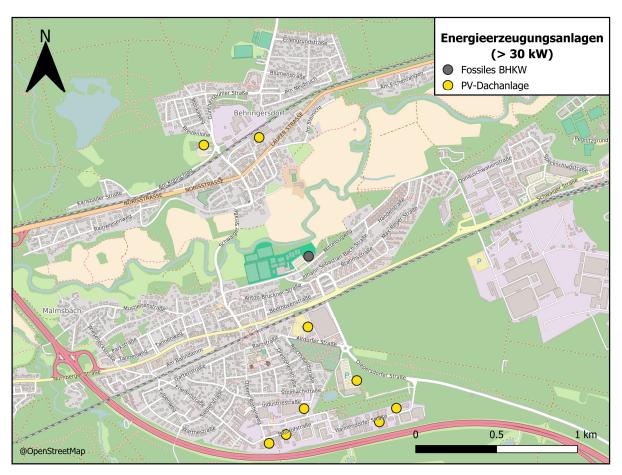


Abbildung 4: Standorte größerer Energieerzeugungsanlagen

Auf dem Gemeindegebiet sind ca. 460 PV-Anlagen mit einer Gesamtleistung von 4,63 MW installiert. Dabei handelt es sich um Aufdachanlagen auf Wohn- und Industriegebäuden oder Balkonsolaranlagen. Bis auf wenige Ausnahmen beträgt die installierte Leistung pro Anlageweniger als 30 kWp. Freiflächenanlagen sind in Schwaig keine vorhanden, auch Biomasse wird nicht zur Stromerzeugung verwendet. Es gibt insgesamt 9 kleine fossile Stromerzeugungsanlagen, teils in Verbindung mit Kraft-Wärmekopplung mit einer gesamten elektrischen Leistung von 0,2 MW und einer thermischen Leistung von 0,41 MW. Die Größte wird zur Beheizung des Hallenbads genutzt, hier werden 8.000 Vollbenutzungsstunden angesetzt. Bei den anderen Anlagen wird davon ausgegangen, dass sie überwiegend zu Heizzwecken genutzt werden und daher 1.500 Vollbenutzungsstunden aufweisen.

Tabelle 3 listet die elektrische Leistung und die jährlich erzeugte Strommenge aller Energieerzeugungsanlagen nach Marktstammdatenregister auf. Aufgrund der höheren Volllaststundenzahl erzeugen die kleinen fossilen Blockheizkraftwerke trotz der geringen installierten Leistung eine vergleichsweise hohe Strommenge.

Tabelle 3: Therm. und elektr. Leistungen bzw. Energiemengen der Wärmenetze und Stromerzeugungsanlagen nach Marktstammdatenregister

Erzeugungs- art	Thermische Leistung [MW]	Erzeugte Wärme- menge [MWh/a]	Elektrische Leistung [MW]	Erzeugte Strom- menge [MWh/a]
Photovoltaik	-	-	4,63	4.403
Biomasse	-	-	-	-
Wasserkraft	-	-	-	-
Fossile Energieträger	0,41	1,69	0,20	1.069
Strom- speicher	-	-	1,05	-

Abbildung 5 zeigt graphisch die installierte elektrische Leistung und den anhand von exemplarischen Vollaststunden berechneten elektrischen Ertrag auf dem Gebiet der Gemeinde Schwaig. Photovoltaik macht mit großem Abstand den Haupanteil der erzeugten Strommenge aus.

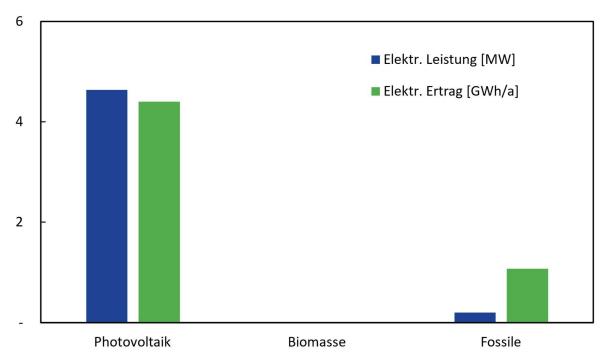


Abbildung 5: Elektrische Leistungen und Erträge nach Marktstammdatenregister

2.3.2. Versorgungsnetze der Wärmeversorgung

Die Wärmeversorgung eines Gebäudes kann laut Wärmeplanungsgesetz zentral oder dezentral erfolgen. Eine zentrale Wärmeversorgung liegt vor, wenn ein Gebäude entweder an einem Wärme- oder einem Gasnetz angeschlossen ist. Falls keine leitungsgebundene Energieversorgung vorhanden ist, handelt es sich um eine dezentrale Wärmeversorgung. In Schwaig gibt es keine Wärmenetze, aber ein sich über alle Baublöcke erstreckendes Gasnetz (betrieben von der N-ERGIE Netz GmbH), wie in Abbildung 6 dargestellt. Allerdings sind nicht alle Gebäude in den jeweiligen Blöcken auch ans Netz angeschlossen.

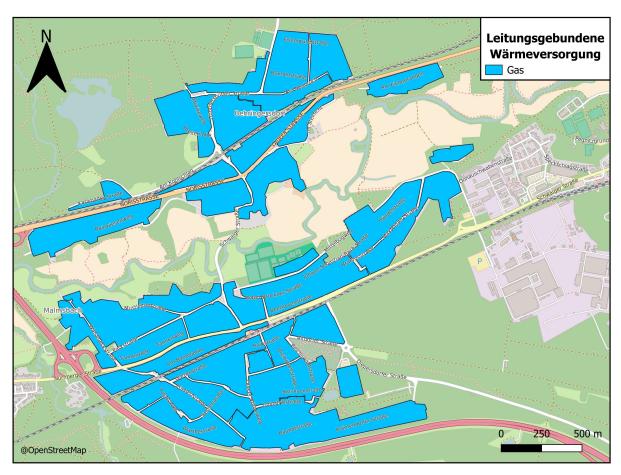


Abbildung 6: Leitungsgebundene Wärmeversorgung in den Baublöcken

2.3.3. Stromversorgungsnetze

Es ist wichtig, den Sektor Wärme nicht einzeln zu betrachten. Die Idee der Sektorenkopplung sollte bei jedem Energiekonzept mitbedacht werden. Da voraussichtlich in naher Zukunft die Nutzung von Strom zur Wärmegewinnung stärker in Anspruch genommen wird (primär durch den Einsatz von Wärmepumpen), ist in Abbildung 7 das Stromnetz im Betrachtungsgebiet dargestellt, welches von der N-ERGIE Netz GmbH betrieben wird. Dargestellt sind der Verlauf der Mittelspannungsfreileitungen und -kabel (MS = Mittelspannung), der Hochspannungsfreileitung (HS = Hochspannung) sowie das im südlichen Gemeindegebiet gelegene Umspannwerk.

2.3.4. Abwasserkanalnetz

Abwärme aus Abwasser stellt ein großes Potenzial dar. Allerdings muss dafür ein bestimmter Volumenstrom gegeben sein. Daher wird in Abbildung 8 nur das Kanalnetz mit einem Durchmesser von größer als 800 mm angezeigt. Zudem sind die Standorte der Sammel-, Rückhalte- und Überlaufbecken zu sehen.

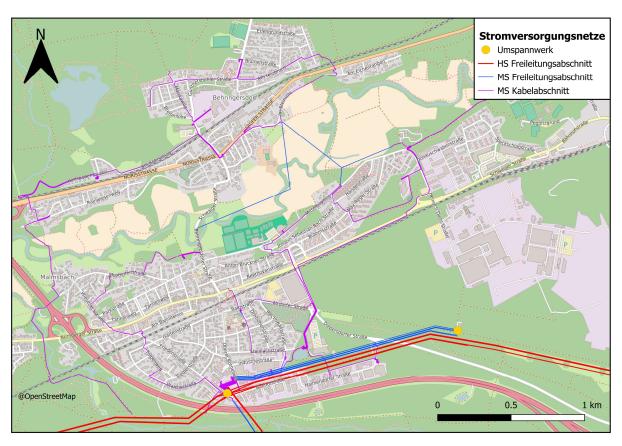


Abbildung 7: Stromversorgungsnetze auf dem Gemeindegebiet

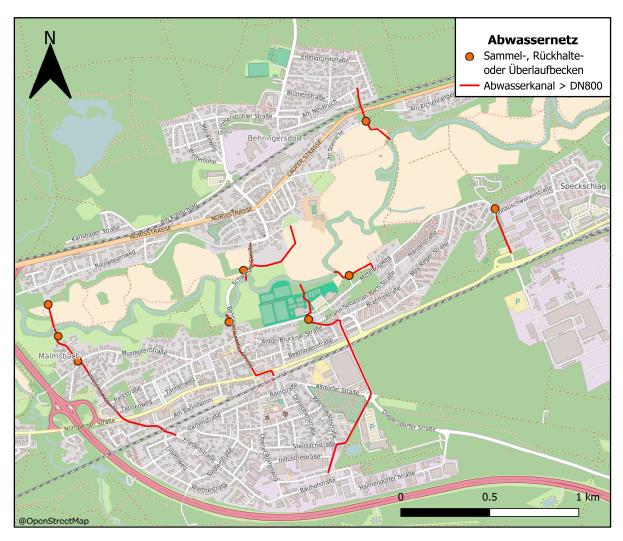


Abbildung 8: Kanalnetz mit Durchmesser größer 800 mm und Sammel-, Rückhalte- und Überlaufbecken

2.4. Wärmeerzeugung: Methodik zur Ermittlung des IST-Zustands

Für die Analyse der bestehenden Wärmeerzeugungsstruktur und der jährlichen Wärmeverbräuche werden sowohl die Daten der Kaminkehrer, übermittelt durch das Landesamt für Statistik, sowie die durch den Netzbetreiber N-ERGIE Netz Gmbh übergebenen Erdgasverbräuche (aufgeteilt in Industrie- und Jahreskunden) ausgewertet.

Da es sich bei den Jahren 2022 und 2023 um energetische Krisenjahre mit abweichendem Verbrauchsverhalten handelt und 2023 darüber hinaus ein überdurchschnittlich warmes Jahr war [5], wird bei allen Verbrauchsdaten auf die Mittelwerte der Jahre 2019 bis 2021 zurückgegriffen.

Bei den Kehrbuchdaten werden für jede Straße folgende Angaben aufgeführt:

- Gesamtanzahl der Heizungen
- Durchschnittsalter der Heizungen
- Mittlere Nennwärmeleistung aller Anlagen
- Anteil fossiler Energieträger
- Anzahl der Zentral- und Einzelraumheizungen (Etagenheizungen zählen zu Zentralheizungen)
- Anzahl der Anlagen in den folgenden Energieträgern:
 - Gase
 - Heizöl
 - Feste Biomasse
 - Sonstige Fossile (u.a. Flüssiggas)

Ebenfalls aufgeführt, aber nicht mitbetrachtet, sind die Anlagen in folgenden beiden Energieträgerkategorien: Sonstige Erneuerbare Energien, für die eine Gesamtanzahl von 0 angegeben ist, und "Sonstige (Keine Zuordnung nach 1. BlmSchV, Keine Angaben etc.)", die nur einen sehr geringen Anteil der Heizungen ausmachen und eine zu heterogene Gruppe darstellen, um sie in die Betrachtung mit einzubeziehen.

Aus Datenschutzgründen werden Straßen, in denen nur eine oder zwei Anlagen eines Energieträgers vorkommen, teilweise verschlüsselt. Das bedeutet, dass neben dem betroffenen Energieträger auch andere Werte der Straße wie z.B. die Gesamtanzahl der Heizungen und die Anzahl der Zentralheizungen verschlüsselt werden, so dass nicht auf den zu schützenden Wert zurückgeschlossen werden kann. Um die Daten dennoch auswerten zu können, müssen Annahmen für das verschlüsselte Energieträgerfeld getroffen werden und damit dann die anderen Felder berechnet werden, was zwangsläufig zu Ungenauigkeiten führt.

Aus den Kehrbuchdaten geht nicht hervor, wie sich die Anlagen pro Energieträger jeweils auf Zentral- und Einzelraumheizungen aufteilen. Unter anderem nicht angegeben sind die jeweilige mittlere Leistung jedes Energieträgers, da es lediglich einen Gesamtwert pro Straße für alle Energieträger zusammen gibt. Daher wurden folgende Annahmen für die mittlere Leistung der Energieträger über alle Straßen gemittelt getroffen:

Tabelle 4: Angenommene Leistung der einzelnen Energieträger

Haushalte und Kleingewerbe	Energieträger	Leistung
-	Feste Biomasse [6]	19
	Gas	20,00
Zentralheizung	Öl	25
	Sonstige fossile	30
	Feste Biomasse	8
Einzelraumheizung	Gas	20,00
	Öl	10
	Sonstige fossile	15

Hierbei wurde für zentrale Biomasseanlagen auf den im Biomasseatlas angegebenen Mittelwert der seit 2001 durch das Marktanreizprogramm geförderter Biomasseheizungen in der

Kommune zurückgegriffen [6]. Die Werte für Öl, Sonstige Fossile und Einzelraumheizung Biomasse basieren auf Erfahrungswerten. Die Werte für Gasheizungen sind für beide Heizungstypen gleich, da eine Unterscheidung aufgrund der Kehrbuchdaten nicht möglich ist und der Leistungswert als Stellschraube verwendet wird, um insgesamt eine ähnliche mittlere Leistung zu erhalten wie in den Kehrbuchdaten. Dafür wird zuerst ein Leistungswert für Gas ausgerechnet, indem die Gasverbräuche der Standardkunden durch die Anlagenanzahl in der Kategorie Wohnen & Kleinverbraucher sowie die hier im Allgemeinen verwendete Vollbenutzungsstundenzahl von 1200 h/a geteilt wird. Dieser Wert wird anschließend mit dem mittleren Wert aus den Straßen der Verbrauchsgruppe Wohnen & Kleinverbraucher verglichen. Danach kann der berechnete Wert noch minimal nach oben oder unten korrigiert werden, um die reale Situation vor Ort abzubilden. Die Volllaststundenzahl wurde so angesetzt, dass multivalente Systeme wie z.B. eine Zentralheizung in Verbindung mit Kaminen, Solarthermie, Brauchwasserwärmepumpe etc. berücksichtigt sind.

Da in den Kaminkehrer-Daten sämtliche dezentralen Wärmeerzeuger im Gemeindegebiet aufgelistet sind, müssen diese zunächst aufbereitet werden, um sie in die verschiedenen Verbrauchergruppen differenziert auswerten zu können. Dafür werden die Straßen nacheinander einzeln betrachtet und bestimmt, welche Verbrauchergruppen jeweils vorliegen. Für die Öffentlichen Einrichtungen liegt dafür eine Liste der Gemeinde einschließlich Adressen vor. Industrielle Großverbraucher wurden bereits im Rahmen der Akteursbeteiligung ermittelt und um Teilnahme an einer Umfrage für Industrieunternehmen gebeten, in der unter anderem der Wärme- und Stromverbrauch abgefragt wird. Darüber hinaus kann auch eine hohe durchschnittliche Leistung der Heizungsanlagen in einer Straße auf industrielle Verbraucher hinweisen. Häufig liegt eine Mischnutzung der Straßen vor.

Zunächst werden die Straßen mit industriellen Verbrauchern untersucht. Dafür wird im Falle von Mischnutzung abgeschätzt, wie viele Gebäude und damit Heizungsanlagen den jeweiligen Verbrauchergruppen zugeordnet werden können. Bezüglich der Aufteilung der eingesetzten Energieträger müssen ebenfalls Annahmen getroffen werden. So werden zum Beispiel Zentral- und Einzelfeuerungsanlagen Biomasse in der Regel dem Bereich Wohnen & Kleinverbraucher zugeordnet (z.B. Pelletheizungen und Kamine), während der Energieträger Sonstige Fossile überwiegend der Industrie zugewiesen wird. Grundsätzlich wird davon ausgegangen, dass Prozesswärme mehrheitlich mit Erdgas erzeugt wird.

Die installierte Leistung von Biomasse, Heizöl und Sonstige Fossile aufgeteilt in Zentral- und Einzelraumheizung werden errechnet, indem die jeweilige Anlagenzahl mit der entsprechenden Leistung aus Tabelle 4 multipliziert wird.

Im Bereich Wohnen & Kleingewerbe wird nach derselben Vorgehensweise verfahren. Anlagen der Industrie und öffentlicher Einrichtungen müssen abgezogen werden.

Aus der errechneten Leistung wird der Verbrauch dann anhand eines angenommenen Kesselwirkungsgrades von 90 % (Erfahrungsmittelwert Wirkungsgrad Verbrennungsheizung zur Berücksichtigung der auftretenden Bereitstellungsverluste) und einer Volllaststundenzahl bestimmt. Da industrielle Prozesse sehr heterogen sind und der Einsatz von Energieträgern von Prozess zu Prozess stark schwanken kann, ist eine pauschale Annahme von Volllaststunden für die Industrie schwierig. Allerdings wird davon ausgegangen, dass die Prozesswärme überwiegend mit Erdgas erzeugt wird. Also wird angenommen, dass die restlichen Energieträger mehrheitlich zur Erzeugung von Raumwärme eingesetzt werden und damit eine einheitliche

Volllaststundenzahl mit den anderen Verbrauchergruppen von 1200 h/a angesetzt werden kann. Die einzige Ausnahme stellen die Einzelraumheizungen Biomasse dar, die mit einer niedrigeren Volllaststundenzahl betrieben werden, es wird der Wert von 570 h/a angesetzt [7]. Die Volllaststundenzahl wurde so angenommen, dass multivalente Systeme wie z.B. eine Zentralheizung in Verbindung mit Kaminen, Solarthermie, Brauchwasserwärmepumpe etc. berücksichtigt sind.

Für die Öffentlichen Einrichtungen lagen über die Gemeinde die tatsächlichen Verbrauchsdaten vor, so dass nicht auf andere Datenquellen zurückgegriffen werden musste.

Die Wärmeverbräuche aus dem Energieträger Gas werden jeweils anhand der von der N-ERGIE Netz GmbH übermittelten Gasverbräuche berechnet. Der Wert für die Industrie ist hier bereits separat ausgewiesen. Der Wert für den Bereich Wohnen & Kleinverbraucher wird aus dem Wert der Jahreskunden abzüglich der Gasverbräuche der Öffentlichen Einrichtungen errechnet.

Zur Validierung der Volllaststundenzahl wurde ein Vergleichswert der Verbrauchergruppen Wohnen & Kleingewerbe und Öffentliche Einrichtungen mittels der Leistungen aus den Kehrbuchdaten für Erdgasheizungen berechnet. Da die Anlagenleistung für Gas bereits aus den tatsächlichen Verbräuchen stammt, ist hier eine Berücksichtigung des Verbrennungswirkungsgrades nicht notwendig. Die Abweichung beträgt lediglich 5,6 %, was die Richtigkeit der Annahmen unterstreicht und eine ausreichende Genauigkeit für die Betrachtungsebene der Kommunalen Wärmeplanung darstellt.

Zur Berechnung der durch Wärmepumpen bereitgestellte Energie wird der Stromverbrauch für Wärmepumpen und Nachtspeicheröfen mit einer exemplarischen Jahresarbeitszahl von 3,1 multipliziert. Da aus den Daten nicht hervorgeht, wie hoch der Anteil der Nachtspeicherheizungen an den mit Strom betriebenen Heizungen ist, wird vereinfachend davon ausgegangen, dass es sich bei allen Anlagen um Wärmepumpen handelt. Es wird eine Volllaststundenzahl von 1500 Stunden angenommen.

Die jährlich durch Solarthermie erzeugte Wärmemenge wird errechnet mittels einer im Solaratlas [8] angegebenen Kollektorfläche multipliziert mit einem im Energie-Atlas Bayern [4] verzeichneten repräsentativen Wert für die jährliche Wärmeerzeugung pro Fläche.

Somit liegen die Wärmeverbräuche aufgeteilt nach Energieträgern und Verbrauchergruppen für das ganze Gemeindegebiet vor. Diese werden in den folgenden Unterkapiteln aufgelistet.

2.5. Energiebilanz Wärme

In diesem Kapitel werden die derzeit vorhandenen Energieverbräuche unterteilt nach den eingesetzten Energieträgern für die bereits genannten drei Verbrauchergruppen analysiert.

2.5.1. Wohnen & Kleinverbraucher

Tabelle 5 listet den thermischen Endenergieverbrauch aufgeteilt nach Energieträgern von der Verbrauchergruppe Wohnen & Kleinverbraucher auf. In Abbildung 9 ist die prozentuale Verteilung dargestellt.

Tabelle 5: Thermischer Endenergieverbrauch des Bereichs Wohnen & Kleinverbraucher. Aufgeteilt auf Energieträger

Energieträger	Thermischer Endenergieverbrauch [MWh/a]
Erdgas	54.800
Heizöl	26.900
Sonstige Fossile	400
Biomasse	8.300
Solarthermie	400
Wärmepumpen und Stromheizung	2.300
Gesamt	93.100

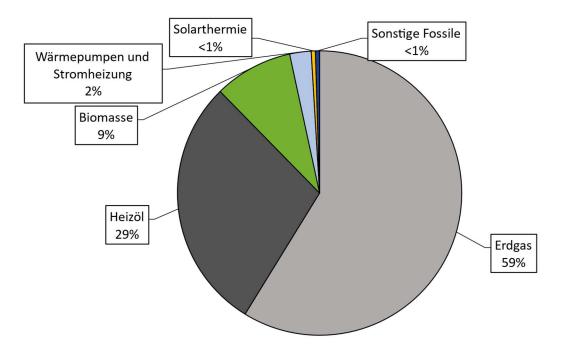


Abbildung 9: Verteilung thermischer Endenergieverbrauch Wohnen & Kleinverbraucher

Zu erkennen ist, dass Erdgas zusammen mit Heizöl 88 % der bereitgestellten Energie für Raumwärme und Warmwasser in dieser Verbrauchergruppe darstellen. Biomasse hat einen Anteil von circa 9% am Energieverbrauch. Wärmepumpen und Speicherheizungen, Solarthermie und Sonstige Fossile stellen zusammen nur 3 % des Verbrauchs dar.

2.5.2. Industrie & Großgewerbe

Tabelle 6 listet den thermischen Endenergieverbrauch aufgeteilt nach Energieträgern von Industrie & Großgewerbe auf. In Abbildung 10 ist die prozentuale Verteilung dargestellt.

Tabelle 6: Thermischer Endenergieverbrauch von Industrie & Großgewerbe. Aufgeteilt auf Energieträger

Energieträger	Thermischer Endenergieverbrauch [MWh/a]
Erdgas	13.700
Heizöl	700
Sonstige Fossile	200
Biomasse	<100
Gesamt	14.700

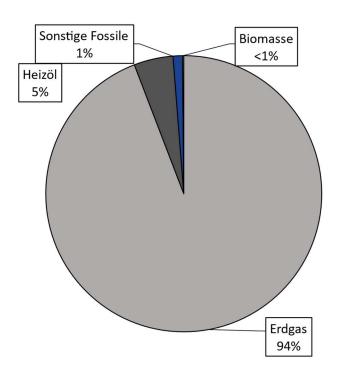


Abbildung 10: Verteilung thermischer Endenergieverbrauch Industrie & Großgewerbe

Mit 94 % stellt Erdgas den mit Abstand größten Anteil am Endenergieverbrauch von Industrie & Großgewerbe dar. Dies liegt daran, dass in der Industrie ein hoher Anteil der Wärmeerzeugung auf Prozesswärme zurückzuführen ist. Weitere 5 % der Wärme werden mit Heizöl bereitgestellt. Der Rest setzt sich aus Biomasse und Sonstigen Fossilen zusammen.

2.5.3. Öffentliche Einrichtungen

Tabelle 7 listet den thermischen Endenergieverbrauch aufgeteilt nach Energieträgern der Öffentlichen Einrichtungen auf. In Abbildung 11 ist die prozentuale Verteilung dargestellt.

Tabelle 7: Thermischer Endenergieverbrauch der öffentlichen Einrichtungen. Aufgeteilt auf Energieträger

Energieträger	Thermischer Endenergieverbrauch [MWh/a]
Erdgas	3.200
Biomasse	900
Gesamt	4.100

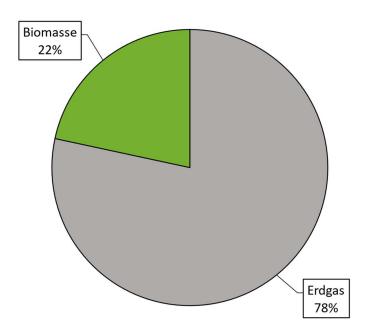


Abbildung 11: Verteilung thermischer Endenergieverbrauch der Öffentlichen Einrichtungen

Erdgas stellt mit 78 % den größten Anteil am Verbrauch der öffentlichen Einrichtungen dar, Biomasse liegt bei 22 %. Weitere Energieträger werden nach derzeitigen Wissenstand nicht eingesetzt.

2.5.4. Zusammenfassung Energiebilanz Wärme

In Abbildung 12 ist die prozentuale Verteilung des Energiebedarfs von Raumwärme, Warmwasserbereitstellung und Prozesswärme aufgeteilt auf die drei Verbrauchergruppen zu sehen. Wohnen & Kleinverbraucher ist mit 83 % des Gesamtwärmebedarfs die größte Verbrauchsgruppe. Es folgt Industrie & Großgewerbe mit 13 %, öffentliche Einrichtungen liegen bei 4 %.

Abbildung 13 zeigt die bereitgestellten Energiemengen je Energieträger für Heiz- und Prozesswärme aller Verbrauchergruppen auf. Mit zusammen 89 % stellen Erdgas und Heizöl den Großteil des Verbrauches dar. Biomasse hat einen Anteil von 8 %, die anderen Energieträger machen nur 3 % aus.

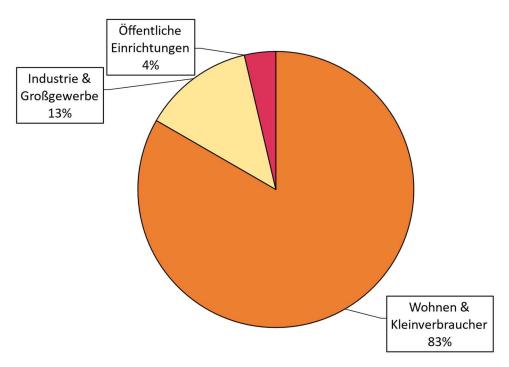


Abbildung 12: Prozentualer Energieverbrauch für Heiz- und Prozesswärme aufgeteilt auf Verbrauchergruppen

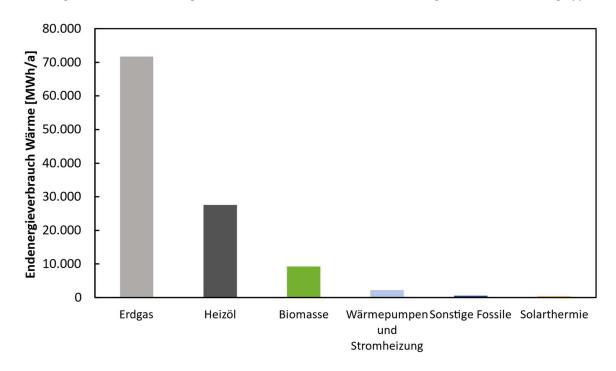


Abbildung 13: Energieträgerverteilung für Heiz- und Prozesswärme aller Verbrauchergruppen

Tabelle 8 listet die Kennwerte der Energiebilanz Wärme auf. Wie auch die Energiebilanz des Strombezugs und die Treibhausgasbilanz sollen diese einheitlichen Kennwerte einen Vergleichswert für die nächste Fortschreibung der Wärmeplanung darstellen. Somit kann die Ist-Situation und der Fortschritt in der Wärmewende auf dem Gemeindegebiet überprüft und beurteilt werden. Außerdem können Trends bei der Nutzung von KWK-Anlagen und dem Ausbau von Wärmenetzen festgestellt werden. [9]

Tabelle 8: Kennwerte der Energiebilanz Wärme

Kennzahl	Wert	Einheit
Endenergieverbrauch Wärme Wohnen & Kleinverbraucher pro Einwohner	10.430	kWh/(a*Einwohner)
Endenergieverbrauch Wärme öffentliche Einrichtungen pro Einwohner	460	kWh/(a*Einwohner)
Endenergieverbrauch Wärme Wohnen & Kleinverbraucher pro m2 Wohnfläche	210	kWh/(a*Einwohner*m2)
Endenergieverbrauch Wärme Industrie & Großgewerbe pro Einwohner	1.630	kWh/(a*Einwohner)
Einsatz erneuerbarer Energien (im Bereich Wärme) Wohnen & Kleinverbraucher pro Kopf	1.240	kWh/(a*Einwohner)
Anteil erneuerbarer Energien Wohnen & Kleinverbraucher an lokaler Wärmeerzeugung	12	%
Installierte thermische KWK-Leistung pro Kopf	0,05	kW/Einwohner
Anzahl Hausanschlüsse Wärmenetz	-	-
Anzahl Hausanschlüsse Gasnetz	k.A.	-
Länge Wärmenetzleitung	-	m
Länge Gasnetzleitung	ca. 55.300	m

Die Kennzahl für den flächenbezogenen Endenergieverbrauch Wärme wird anhand der Einwohnerzahl der Gemeinde und der durchschnittlichen Wohnfläche in Bayern pro Person von 48,8 m² berechnet [10]. Da hier auch der Energieverbrauch der Kleinverbraucher miteinbezogen ist, ist der Wert höher als bei einer ausschließlichen Betrachtung der Wohngebäude. Werte für die Anzahl der Hausanschlüsse im Gasnetz liegen nicht vor. Aus den Kehrbuchdaten geht jedoch hervor, dass ca. 2500 Gasheizungen in Schwaig betrieben werden.

2.6. Raumwärme- und Warmwasserbedarf auf Baublockebene

Da aus den Wärmeerzeugerleistungen der Kaminkehrer-Daten, welche straßenzugsweise vorliegen, nicht auf den Wärmebedarf eines einzelnen Gebäudes geschlossen werden kann, wird auf das gebäudescharfe Wärmekataster, das im Rahmen des Energienutzungsplans erstellt wurde, zurückgegriffen. Die vorhandenen tatsächlichen Verbrauchsdaten aus der Befragung von Bürgerinnen und Bürgern, der Industrie und der Öffentlichen Einrichtungen werden zusätzlich eingepflegt.

Wie bereits erwähnt wird die Gemeinde aus Datenschutzgründen und zur besseren Veranschaulichung in Baublöcke aufgeteilt. Die Bedarfe der einzelnen Gebäude in einem Baublock werden aufsummiert. Für Großabnehmer in öffentlicher Hand wie z.B. Schulen und Freibäder wird mit den tatsächlichen Verbräuchen gerechnet. Industriegebiete werden mit tatsächlichen Verbräuchen aus den Fragebögen hinterlegt. Allerdings werden die Baublöcke in den nachfolgenden Grafiken ausgegraut, wenn sich zu wenige Abnehmer in dem Gebiet befinden, so dass auf einzelne Firmen zurückgeschlossen werden könnte. Größere Industriegebiete/ Gewerbe werden zudem in separate Blöcke eingeteilt, damit diese die Werte der Haushalte nicht verfälschen.

Die Energie- und Treibhausgasbilanz hat den Zweck die aktuelle Ist-Situation darzustellen. Dafür ist der tatsächliche Verbrauch ein geeigneter Parameter. Die folgenden Karten dienen dazu, die Gemeinde in Gebiete für eine zukünftige Wärmeversorgung einzuteilen. Dafür ist der Wärmebedarf eine geeignete Größe, da er unabhängig von der eingesetzten Technologie und dem verwendeten Energieträger ist.

2.6.1. Absoluter Heizwärme- und Warmwasserbedarf

Abbildung 14 zeigt in Baublöcken aufgeteilt den absoluten jährlichen Heizwärme- und Warmwasserbedarf auf. Wärmebedarfe großer Industrieunternehmen, die einzeln in einem Baublock liegen, werden aus Datenschutzgründen nicht aufgeführt.

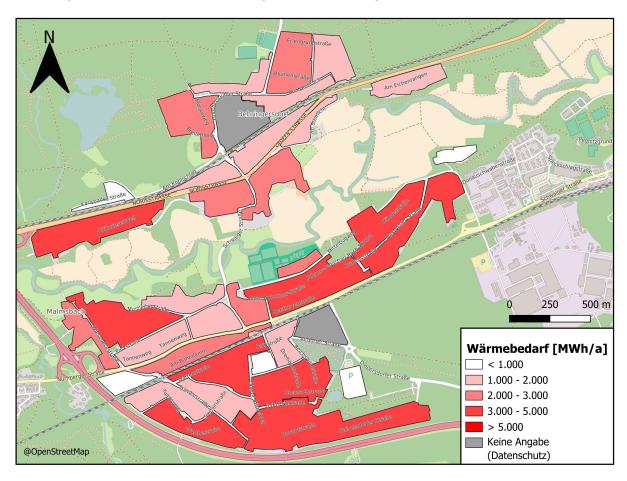


Abbildung 14: Absoluter jährlicher Heizwärme- und Warmwasserbedarf pro Baublock

Je dunkler das Rot der Fläche, desto größer ist der absolute Wärmebedarf. Es ist zu erkennen, dass vor allem in den Randgebieten des Ortsteils Schwaig die absoluten Wärmebedarfe sehr hoch sind. Da dieser Wert nicht relativiert ist, hängt die Größe des Wärmebedarf jedoch stark von der Größe des Baublockes ab. Dennoch ist es möglich mit dieser Karte schnell und einfach Gebiete mit einem hohen Wärmebedarf zu identifizieren.

2.6.2. Heizwärme- und Warmwasserbedarf pro Baublockfläche

In Abbildung 15 ist der jährliche Heizwärme- und Warmwasserbedarf pro Baublockfläche zu sehen. Auch hier sind einzelne Industrieverbraucher ausgegraut.

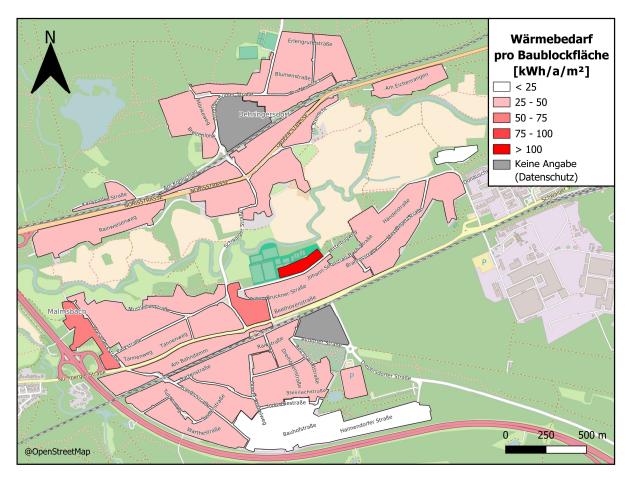


Abbildung 15: Jährlicher Heizwärme- und Warmwasserbedarf pro Baublockfläche

Hier wird der Wärmebedarf auf die Fläche des Baublockes bezogen, wodurch sich je Baublock ein Wert in kWh pro Jahr und m² ergibt. Bei den Intervallen wurde sich an die Richtwerte für Wärmenetze angelehnt [9] [11]. Es ist zu erkennen, dass die meisten Baublöcke einen ähnlichen spezifische Wärmebedarf aufweisen. Eine Ausnahme bildet zum Beispiel das Schwimmbad, bei dem ein relativ großer Bedarf auf einer kleinen Fläche vorliegt.

2.6.3. Wärmeliniendichte

Ein wichtiges Kriterium hinsichtlich der Eignung für die Versorgung durch ein konventionelles Wärmenetz stellt die Wärmeliniendichte mit der Einheit kWh pro Jahr und Meter dar. Hiermit lassen sich grob die Wärmemengen für einen Straßenabschnitt abschätzen, welche durch ein Wärmenetz zur Verfügung gestellt werden müssten. Je höher dieser Wert ist, umso geringer sind die anteiligen Wärmeverluste während des laufenden Betriebs eines Wärmenetzes. Abbildung 16 zeigt beispielhaft einen Ausschnitt des Ortsteils Schwaig südlich der Bahngleise, in dem unter anderem das Rathaus und die Grundschule liegen.

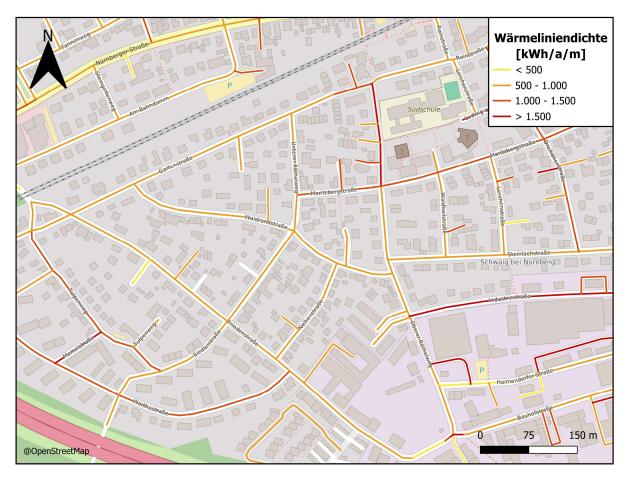


Abbildung 16: Wärmeliniendichten am Beispiel des Ortsteils Schwaig südlich der Bahngleise

Straßenabschnitte mit kleineren Häusern und geringer Dichte weisen einen geringeren Wert der Wärmeliniendichte auf. In Straßenzügen mit Großverbrauchern und dichter Mehrfamilienhausbebauung ist ein höherer Wert vorhanden.

2.7. Energiebilanz Strombezug

Ziel der Sektorenkopplung ist es unter anderem, die Verknüpfung von Wärme und Strom weiter voranzureiben und so die Auslastung elektrischer, regenerativer Erzeugungskapazitäten zu optimieren. Daher wird für die Wärmeplanung auch eine Energiebilanz des Strombezuges aufgestellt.

2.7.1. Methodik

Wie auch bei den Gaswerten weichen die Jahre 2022 und 2023 ab und werden daher nicht berücksichtigt. Die Strombezugswerte für die Jahre 2019-2021 werden gemittelt. Stromerzeugung mit Eigenverbrauch, z.B. durch PV-Aufdachanlagen oder PPA-Freiflächen, sind in der Energiebilanz nicht enthalten. Die tatsächlichen Strombezugswerte werden auf die Verbrauchergruppen aufgeteilt. Zu den Öffentlichen Einrichtungen, für die die tatsächlichen Verbräuche vorliegen, wird der Stromverbrauch der Straßenbeleuchtung addiert. Der Stromverbrauch für Wärmepumpen und Nachtspeicherheizungen wird nicht mitberücksichtigt, da dieser schon in der Energiebilanz verrechnet ist.

2.7.2. Zusammenfassung Energiebilanz Strombezug

In Tabelle 9 sind die Strombezugsdaten des Energieversorgers für die ganze Gemeinde Schwaig aufgeteilt auf die Verbrauchergruppen aufgelistet. Abbildung 17 zeigt den prozentualen Strombezug aufgeteilt auf die Verbrauchergruppen.

Tabelle 9: Strombezug aufgeteilt auf Verbrauchergruppen

Verbrauchergruppe	Strombezug [MWh/a]
Industrie & Großgewerbe	15.300
Wohnen & Kleinverbraucher	16.200
Öffentliche Einrichtungen	700
Gesamt	32.200

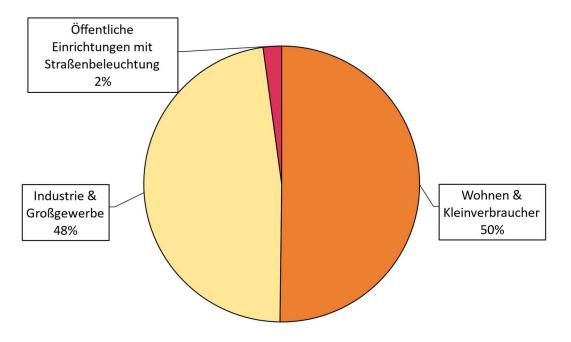


Abbildung 17: Prozentualer Strombezug aufgeteilt auf die Verbrauchergruppen

Wohnen & Kleinverbraucher sowie Industrie & Großgewerbe liegen mit 50 % und 48 % des Strombezugs nahe beieinander. Die Öffentlichen Einrichtungen inklusive Straßenbeleuchtung machen nur 2 % aus.

In Tabelle 10 sind die Kennwerte der Energiebilanz des Strombezugs aufgelistet. Der bilanzielle Anteil erneuerbarer Energien an der lokalen Stromerzeugung liegt bei circa 80 %. Abgesehen von einzelnen kleinen fossilen KWK-Anlagen wird der Großteil des Stroms aus Photovoltaik (siehe Abbildung 5) erzeugt.

Tabelle 10: Kennwerte der Energiebilanz Strombezug

Kennwert	Wert	Einheit
Endenergieverbrauch Strom Wohnen & Kleinverbraucher pro Einwohner	1.810	kWh/(a*Einwohner)
Endenergieverbrauch Strom Öffentliche Einrichtungen pro Einwohner	80	kWh/(a*Einwohner)
Anteil erneuerbarer Energien an lokaler Stromerzeugung	0,80	-
Installierte elektrische KWK-Leistung pro Kopf	0,02	kW/Einwohner

2.8. Treibhausgasbilanz Wärme und Strom

Für die Treibhausgasbilanz werden die aktuellen Verbräuche für Wärme und Strom mit spezifischen Kennzahlen der CO₂-Äquivalente versehen. Für einen besseren Vergleich zukünftiger Treibhausgasemissionen sind in Tabelle 11 die spezifischen CO₂-Äquivalente aufgelistet.

Tabelle 11: CO₂-Äquivalente der Energieträger

Energieträger	CO ₂ -Äquivalente [g/kWh _{Endenergie}]	Literatur
Heizöl	311	[12]
Erdgas	233	ebd.
Flüssiggas	313	[13]
Kohle	452	[12]
Biomasse (vgl. Naturbel. stückiges Holz)	24	[14]
Solarthermie	13	[12]
Strom-Mix	381	[15]
Strom-Mix Wärmepumpe (Berücksichtigung COP)	131	[14]
Sonstige Fossile	400	Eigene Annahme

Da in den Kehrbuchdaten nicht zwischen verschiedenen Biomasse-Energieträgern wie Pellets, Stückholz, Hackschnitzel etc. unterschieden wurde, wird für die Biomasse ein einheitlicher Wert angenommen. Dieser entspricht dem von naturbelassenen stückigem Holz. Die in den Kaminkehrerdaten aufgeführte Kategorie Sonstige Fossile umfasst verschiedene fossile Energieträger, wie z.B. Kohle und Flüssiggas. Es wurde ein einheitlicher Wert von 400 g/kWh angenommen, der sich zwischen Kohle und Heizöl bewegt.

In Abbildung 18 sind die Endenergieverbräuche pro Verbrauchergruppe von Wärme und Strom aufsummiert dargestellt. Ausgehend von den Verbräuchen werden die CO₂-Äquivalente berechnet.

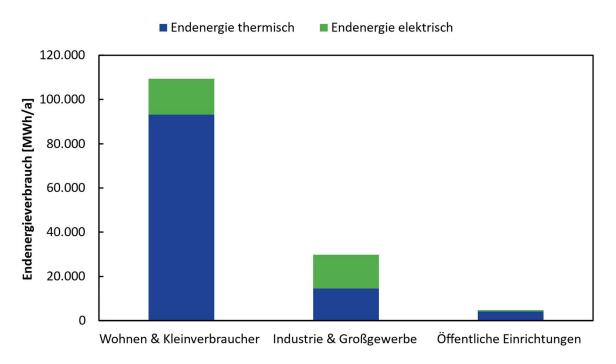


Abbildung 18: Endenergieverbrauch thermisch und elektrisch des ganzen Gemeindegebiets aufgeteilt auf die Verbrauchergruppen

Abbildung 19 zeigt die Treibhausgasbilanz für das ganze Gemeindegebiet aufgeteilt auf Verbrauchergruppen für den Wärme- und Stromverbrauch. Aufgrund des höchsten Wärmebedarfs der Verbrauchergruppen hat der Bereich Wohnen & Kleinverbraucher auch den höchsten Treibhausgaswert. Die Emissionen durch die Bereitstellung von elektrischer Energie unterscheiden sich jedoch nur wenig von denen der Industrie und des Großgewerbes. Insgesamt werden auf dem Gemeindegebiet jährlich 39.000 t CO₂-äq. in den Sektoren Wärme und Strom emittiert.

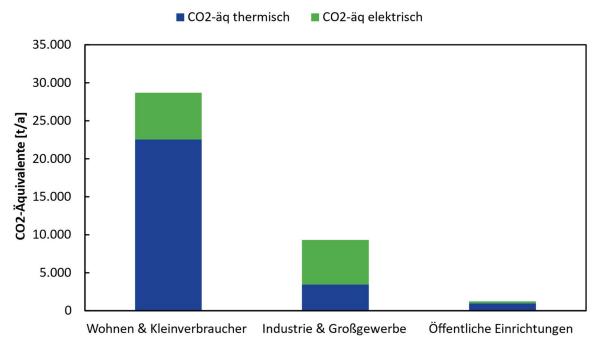


Abbildung 19: CO₂-Äquivalente resultierend aus dem Endenergieverbrauch. Für das ganze Gemeindegebiet aufgeteilt auf die Verbrauchergruppen

Tabelle 12 listet die Kennwerte der Treibhausgasbilanz auf. Somit können Fortschreibungen des Wärmeplans mit der aktuellen Situation verglichen werden.

Tabelle 12: Kennwerte der Treibhausgasbilanz

Kennwert	Wert	Einheit
THG-Emissionen Wärme Wohnen & Kleinverbraucher pro Einwohner	2,52	t _{CO2-äq.} /(a*Einwohner)
THG-Emissionen Wärme Öffentliche Einrichtungen pro Einwohner	0,11	t _{CO2-äq.} /(a*Einwohner)
THG-Emissionen Wärme Industrie & Großgewerbe pro Einwohner	0,39	t _{CO2-äq.} /(a*Einwohner)
THG-Emissionen Strom Wohnen & Kleinverbraucher pro Einwohner	0,69	t _{CO2-äq.} /(a*Einwohner)
THG-Emissionen Strom Öffentliche Einrichtungen pro Einwohner	0,03	t _{CO2-äq.} /(a*Einwohner)
THG-Emissionen Strom Industrie & Großgewerbe pro Einwohner	0,65	t _{CO2-äqu.} /(a*Einwohner)

3. Literaturverzeichnis

- [1] Bayrisches Landesamt für Statistik, "Statistik kommunal 2023. Gemeinde Schwaig b. Nürnberg," März 2024. [Online]. Available: https://www.statistik.bayern.de/mam/produkte/statistik_kommunal/2023/09574156.pdf. [Zugriff am 24 10 2024].
- [2] PLANWERK Stadtentwicklung, Topos team, "Ortsentwicklungskonzept OEK. Gemeinde Schwaig b. Nürnberg," Nürnberg, 2019.
- [3] Bundesnetzagentur, "Marktsammdatenregister," 2024. [Online]. Available: https://www.marktstammdatenregister.de/MaStR. [Zugriff am 5 Juni 2024].
- [4] Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie, "Energie-Atlas Bayern," 2024. [Online]. Available: https://www.energieatlas.bayern.de/. [Zugriff am 01 2024].
- [5] K. Friedrich, D. Niermann, I. F., P. Bissolli, J. Daßler, V. Zins, H. S. und M. Ziese, "Deutscher Wetterdienst. Klimatologischer Rückblick auf 2023: Das bisher Wärmeste Jahr in Deutschland," 2024. [Online]. Available: https://www.dwd.de/DE/leistungen/besondereereignisse/temperatur/20240201_klimar ueckblick-2023.pdf;jsessionid=F9E801852A692BA4A87E7AFF236A938F.live11042?__blob=pu blicationFile&v=6. [Zugriff am 02 12 2024].
- [6] eclareon GmbH, "Biomasseatlas," 2024. [Online]. Available: https://www.biomasseatlas.de/. [Zugriff am Oktober 2024].
- [7] D. Merten und D. Falkenberg, "Wärmegewinnung aus Biomasse," Leipzig, 2004.
- [8] BSW Bundesverband Solarwirtschaft e.V., "Solaratlas," 2024. [Online]. Available: https://www.solaratlas.de/index.php?id=1. [Zugriff am 31 10 2024].
- [9] Klimaschutz- und Energieagentur Baden-Württemberg GmbH, "Kommunale Wärmeplanung Handlungsleitfaden," Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg, Stuttgart, 2020.
- [10] Bayerisches Landesamt für Statistik, "Pressemitteilung," 17 06 2021. [Online]. Available: https://www.statistik.bayern.de/presse/mitteilungen/2021/pm154/index.html. [Zugriff am 12 08 2023].
- [11] C.A.R.M.E.N, "C.A.R.M.E.N. Merkblatt. Nahwärmenetze und Bioenergieanlagen. Ein Beitrag zur effizienten Wärmenutzung und zum Klimaschutz," [Online]. Available: https://www.energiesystemtechnik.de/images/pdf/Merkblatt_Nahwaerme_CARMEN.pd f. [Zugriff am 03 12 2024].

- [12] Klimaschutz- und Energieagentur Baden-Württemberg GmbH, "Technikkatalog zur Kommunalen Wärmeplanung," 01 2024. [Online]. Available: https://www.kea-bw.de/waermewende/wissensportal/kommunale-waermeplanung/einfuehrung-in-dentechnikkatalog. [Zugriff am 09 04 2024].
- [13] Umweltbundesamt GmbH (Österreich), "Berechnung von Treibhausgas (THG)-Emissionen verschiedener Energieträger," 12 2023. [Online]. Available: https://secure.umweltbundesamt.at/co2mon/co2mon.html. [Zugriff am 07 02 2024].
- [14] Umweltbundesamt, "Emissionsbilanz erneuerbarer Energieträger," Dessau-Roßlau, 2022.
- [15] Statista GmbH, "Entwicklung des Emissionsfaktors der Stromerzeugung in Deutschland und Frankreich im Zeitraum 2000 bis 2023," 2024. [Online]. Available: https://de.statista.com/statistik/daten/studie/1421117/umfrage/emissionen-stromdeutschland-und-frankreich/. [Zugriff am 02 03 2024].

4. Hinweise

zeitgeist engineering trifft keine verbindlichen rechts- und steuerberaterlichen Auskünfte, deren Hoheitsgebiete einschlägigen Berufsgruppen obliegen.

Alle im Rahmen dieser Arbeit angenommenen oder vorausgesetzten Rahmenbedingungen basieren auf der Sichtweise von zeitgeist engineering auf die aktuell vorliegenden Gesetzestexte und anderen Unterlagen. Die Betrachtung erfolgt grundsätzlich auf einer ingenieurtechnischen Perspektive. Aufgrund der komplexen Thematik und teils unterschiedlichen Auslegungen der Rechtslage kann keine Gewährleistung für die Richtigkeit dieser Annahmen übernommen werden.

Konkrete Rechtsfragen zu der Thematik dürfen ausschließlich durch zugelassene Anwälte und Experten beantwortet werden. Ebenso können steuerliche Fragen ausschließlich durch einen Steuerberater rechtssicher geklärt werden. Die hier getroffenen Annahmen können nicht als belastbare Steuerberatung oder Rechtsberatung angesehen werden.

Katharina Will

Kathaila Will